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Abstract

Geoeconomic shocks—including tariff escalations, sanctions,
export controls, and commodity dislocations—have increased
disruption frequency and exposed limitations of steady-
state supply chain planning. This paper develops a design-
science, governance-centred framework for resilient supply
chain decision-making by synthesizing institutional resilience
guidance and published empirical findings on analytics-enabled
supply chain performance. The framework is operationalized
© O[Sy as a modular operating model spanning (i) sensing and early

warning, (i1) predictive disruption modelling under regime
shifts, (iii) prescriptive optimization with human-in-the-loop
controls, (iv) digital-twin simulation for scenario stress-testing,
and (v) execution orchestration with auditability and compliance
alignment. The paperprovides an end-to-endreference architecture
(Figure 1), a resilience analytics control matrix linking modules
to prerequisites and governance controls (Table 1), and maturity-
aligned implementation pathways with measurable resilience
KPIs, including time-to-detect, time-to-decide, and time-to-
recover. The findings emphasize that resilience improvements
require both robust models and disciplined governance to ensure
adoption and accountable execution.
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Introduction

Geoeconomic conditions increasingly shape supply chain performance alongside, and often as strongly
as, operational efficiency in the global economy. Trade policy uncertainty, tariffs, sanctions regimes, and
industrial policy interventions now materially influence sourcing feasibility, transit routes, compliance
requirements, and cost structures. Recent macroeconomic outlooks produced by international institutions
emphasize that heightened trade tensions and policy uncertainty strain global supply chains by increasing
production costs, delaying investment decisions, and reducing the predictability required for long-term
planning. At the sectoral level, commodity and metals markets have experienced disruption- and tariff-
related dislocations, amplifying input-cost volatility and procurement risk.These dynamics expose
a structural mismatch between contemporary supply chain realities and classical planning systems.
Traditional supply chain optimization models were largely designed for environments characterized
by relatively stable trade regimes and limited disruption bandwidth. By contrast, current disruptions—
including port congestion, rerouted shipping lanes, export controls, sudden tariff adjustments, energy price
shocks, and supplier financial distress—are nonlinear in nature and can propagate rapidly across multi-
tier networks. As a result, resilience has re-emerged as a central performance objective. In contemporary
literature, resilience is commonly defined as the capacity to anticipate, absorb, adapt to, and recover
from disruptions while maintaining acceptable service levels and cost performance.Importantly, policy
and research communities increasingly stress that resilience should not be equated with autarky or
indiscriminate reshoring. Instead, guidance emphasizes a balanced approach that mitigates supply chain
risks without undermining the efficiency gains of international trade. Diversification strategies, trade
facilitation measures, and strengthened analytical capacity are identified as key enabling conditions
for resilient yet open supply chains.In practical terms, resilience constitutes an optimization problem
under uncertainty. Organizations must detect shocks earlier, make decisions more rapidly under binding
constraints, and execute coordinated recovery actions across functions and supply-chain tiers. This is
the context in which advanced analytics and artificial intelligence have become strategically salient.
Modern supply chains generate large volumes of heterogeneous data, including transactional demand
signals, shipment events, supplier performance metrics, quality indicators, market prices, and external
signals such as policy changes and logistics stress measures. However, data abundance alone does not
ensure improved decision-making. Many organizations continue to face fragmented data architectures,
inconsistent master data, and planning processes that inadequately represent uncertainty, regime shifts, or
tail risks.Survey-based evidence from supply chain leaders indicates persistent gaps in risk identification
and mitigation capabilities, often rooted in governance and operating-model constraints that limit the
translation of analytical insights into operational action. Consequently, recent scholarship increasingly
conceptualizes artificial intelligence not as a narrow automation tool, but as a resilience capability that
spans pre-disruption preparation, in-disruption response, and post-disruption recovery. At the same time,
Al-enabled resilience initiatives exhibit predictable failure modes. Models trained on historically stable
regimes may degrade sharply under structural shocks; algorithmic recommendations may not be embedded
in decision rights or escalation processes; and limited transparency can reduce user trust and adoption.
Geoeconomic disruptions further complicate Al deployment by introducing constraints related to data
sharing, supplier onboarding, and regulatory compliance, including sanctions screening, export controls,
and traceability requirements. Against this backdrop, the central analytical question is no longer whether
firms should deploy artificial intelligence in supply chain management, but rather which governance
structures, data architectures, and decision frameworks are required for analytics to generate measurable
improvements in resilience under conditions of persistent trade uncertainty.
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Research objectives
This study pursues four objectives:

1. Shock pathways and decision loci: Conceptualize the principal geoeconomic shock pathways
(e.g., tariffs, sanctions/export controls, trade fragmentation, and commodity dislocations) that
degrade supply chain performance, and identify the corresponding decision points where analytics
can generate resilience leverage.

2. Operating-model translation: Translate institutional resilience guidance—particularly on
diversification, monitoring, trade facilitation, and analytical capacity—into a firm-level,
governance-centred operating model for analytics-enabled resilience.

3. Reference architecture and controls: Develop an end-to-end reference architecture (Figure
1) and a resilience analytics control matrix (Table 1) that links analytics modules to resilience
mechanisms, governance controls, and measurable outcomes.

4. Implementation and measurement: Propose maturity-aligned implementation pathways and a
resilience measurement system using outcome and process KPIs (e.g., service performance under
disruption, cost-to-serve, and time-to-detect/time-to-decide/time-to-recover).

Contribution

This paper contributes a design-science, governance-centred framework for resilient supply chain decision-
making. First, it links analytics capabilities—such as sensing and anomaly detection, regime-aware
forecasting, prescriptive optimization, and digital-twin simulation—to explicit resilience mechanisms,
including visibility, optionality, decision velocity, and coordinated recovery. Second, it translates high-
level institutional resilience guidance into an implementable operating model by specifying decision rights,
control points, and auditability requirements needed to convert analytics outputs into accountable actions.
Third, it operationalizes resilience measurement by aligning macro-level stress monitoring concepts
with firm-level outcome and process KPIs, enabling trigger-based escalation and post-incident learning
loops. Collectively, the paper provides an end-to-end reference architecture (Figure 1) and a resilience
analytics control matrix (Table 1) intended to support implementation planning and empirical evaluation
in organizational settings.

Materials and Methods
Study Design

This study adopts a design-science and applied-systems synthesis to develop an implementable
framework for resilient supply chain decision-making under geoeconomic shocks. The method proceeds
in four steps:

1. Problem framing and construct definition: Define geoeconomic shock pathways and specify
the resilience outcome space (service, cost, and recovery performance) and the enabling capability
set (visibility, optionality, decision velocity, and recovery orchestration).

2. Evidence synthesis: Integrate institutional guidance and monitoring approaches with published
academic findings and established practitioner patterns to identify recurring design requirements
for analytics-enabled resilience.
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3. Framework construction: Translate requirements into a modular operating model and governance-
centred reference architecture (Figure 1), including decision rights, control points, and auditability
requirements.

4. Operationalization and evaluation logic: Derive a control matrix (Table 1) linking analytics
modules to prerequisites, governance controls, and expected resilience effects, and specify a
measurement system and maturity-aligned implementation pathways.

Data Sources
Evidence was drawn from three categories of sources.

1. Policy and institutional sources (resilience definitions, enabling conditions, and monitoring
constructs):

* OECD guidance on resilience policy tools, monitoring, digitalization, and analytical
capacity.

* World Bank monitoring constructs for global supply chain stress and macro-logistics
disruption.

* United Nations macroeconomic outlooks describing trade tensions, policy uncertainty, and
their implications for supply chains.

» USTR guidance on conceptualizing and measuring supply chain resilience.
* World Bank global outlook material contextualizing trade fragmentation and growth risks.

2. Academic and technical literature (peer-reviewed studies and syntheses on Al/analytics and
resilience):

* Empirical studies examining associations between Al adoption and resilience performance
across preparation, response, and recovery phases.

» Research agendas and conceptual papers on prescriptive analytics and resilience operating
models.

* Recent systematic literature reviews on Al applications in supply chain management, risk
analytics, and resilience.

3. Practitioner architecture references (implementation patterns, operating models, and digital
twin adoption):

* Practitioner materials on analytics operating models in supply chain and procurement.
* Digital twin implementation patterns for end-to-end supply chains.

Source handling note (for rigor): Institutional and practitioner sources were used to derive implementation
constraints and governance patterns, while academic sources were used to substantiate mechanisms and
measurement constructs. Full bibliographic details are provided in the reference list.
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Analytical Framework
Resilience is operationalized through four capabilities:
e Visibility (V): early detection of disruptions using integrated internal and external signals.

* Optionality (O): feasible switching across suppliers, routes, modes, and inventory policies under
constraints.

* Decision velocity (D): speed of scenario evaluation and decision selection under uncertainty.
* Recovery orchestration (R): coordinated execution of recovery actions across functions and tiers.
Al/analytics modules are evaluated against these capabilities using the following criteria:

* C1 — Performance effect: expected impact on service and/or cost under disruption (e.g., OTIF,
fill rate, cost-to-serve).

e (2 — Data feasibility: availability and quality of required internal/external data, including master
data integrity.

* C3 — Shock robustness: robustness under distribution shift, including drift detection and
revalidation needs.

* (C4 — Adoption and accountability: explainability and human-in-the-loop decision integration.

* (5 — Governance and compliance alignment: traceability, audit trails, and trade-compliance
constraints.

Measurement Approach
The measurement system includes:

*  Outcome KPIs: fill rate; OTIF (on-time in-full); lead-time variability and tail risk; cost-to-serve;
revenue at risk; and time-to-recover (TTR).

* Process KPIs: forecast bias and drift under shocks; alert precision/false-positive rate; scenario
cycle time (time-to-decide); override rates and execution adherence.

* Context indicators: external stress proxies (e.g., global stress indices and commodity volatility)
used to contextualize performance and trigger escalation modes.

Limitations

This study is a design-science, applied synthesis rather than a firm-level causal econometric analysis.
Accordingly, the proposed architecture, control matrix, and implementation pathways are presented as
design propositions grounded in prior literature and institutional guidance, not as statistically identified
causal effects. The framework’s performance implications are therefore contingent on organizational
context, including data maturity, process standardization, and governance capability. In addition, the
analysis does not quantify the incremental contribution of individual modules (e.g., forecasting vs.
optimization) or the general-equilibrium effects of trade policy regimes. Future work should evaluate the
propositions through (i) controlled pilots and A/B comparisons on operational KPIs (e.g., OTIF under
disruption, cost-to-serve, time-to-recover), (ii) quasi-experimental designs where feasible, and (iii) multi-
case replications across industries to strengthen external validity.
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Results

Figure 1. Al-and-Analytics Resilience Architecture for Post-Shock Supply Chains
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Interpretation. Figure 1 presents a modular resilience “control loop” that integrates external geoeconomic

signals with internal operational telemetry. The design progresses from early warning to predictive

modelling, prescriptive decision support, scenario simulation, and governed execution. The architecture

emphasizes that measurable resilience depends on both analytical accuracy and operating-model controls—
decision rights, auditability, and KPI-based learning loops.

Table 1 (mandatory)

Table 1. Resilience analytics modules: prerequisites, governance controls, and expected impact

logging

review process

compliance checks

Module Primary Al/analytics Minimum Key governance Expected resilience
methods prerequisites controls impact

Sensing & early | Anomaly detection; Event data; Alert thresholds; T Visibility; | time-
warning NLP event tagging; supplier master false-positive review; | to-detect

supplier risk scoring; | data; external ownership and

ETA prediction feeds; alert escalation rules

taxonomy

Predictive Regime-switch Historical data Drift monitoring; T Decision quality; |
disruption forecasting; lead-time | with shock shock backtesting; bullwhip
modelling distribution modelling; | periods; feature calibration checks

causal feature store; baseline

engineering models
Prescriptive Stochastic Constraints model; | Human approval T Optionality; | cost-
optimization programming; cost-to-serve; gates; explainable to-serve

robust optimization; service targets; recommendations;

constrained RL feasible action set | override logging

(optional)
Digital twin Network simulation; Network graph; Scenario catalog T Preparedness;
simulation scenario stress tests; capacities; service | governance; model faster recovery

counterfactual analysis | rules; scenario validation; periodic

library inputs re-baselining

Orchestration & | Dashboards; Decision rights; Audit trails; post- T Decision
governance playbooks; workflow | SOPs; KPI incident reviews; velocity; 1 recovery

automation; audit system; incident retraining triggers; coordination
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Interpretation. Table 1 links each analytics module to the minimum data and operating prerequisites, the
governance controls required to ensure accountable adoption, and the expected resilience effects. This
mapping is intended to support implementation planning and evaluation by connecting technical design
choices to measurable resilience outcomes.

3.1 Post-shock resilience mechanisms enabled by Al (Revised)

Al can strengthen supply chain resilience through three complementary mechanisms that map directly to
the modular architecture in Figure 1 and the governance/control requirements summarized in Table 1.

Mechanism 1: Signal amplification under uncertainty (visibility and early detection).
During geoeconomic shocks, conventional lagging indicators (e.g., monthly performance reports or
periodic supplier reviews) are often too slow to support timely intervention. Al-enabled sensing integrates
external signals—such as policy announcements, logistics stress, and commodity price dislocations—
with internal operational telemetry to detect early deviations, emerging bottlenecks, and tier-specific
vulnerabilities. In practice, firms can complement macro-level stress monitoring with internal “firm stress
indices” that combine lead-time dispersion, capacity utilization, supplier reliability, and event-based
exceptions to trigger escalation modes and predefined playbooks.

Mechanism 2: Predictive adaptation acrossresilience phases (robust forecasting and risk anticipation).
Resilience is dynamic across preparation, response, and recovery. Under regime shifts, models calibrated
on stable periods can degrade rapidly, and point forecasts can become systematically biased. Predictive
disruption modelling therefore focuses on regime-aware forecasting and lead-time distribution modelling,
supported by drift monitoring and shock backtesting. This mechanism improves decision quality by
converting raw signals into quantified risk and uncertainty estimates that downstream optimization and
scenario planning can use, rather than relying on single-number forecasts.

Mechanism3:Prescriptiveactionselectionandrapidreconfiguration(optionalityandexecutionreadiness).
Prescriptive analytics converts predictions into decisions: sourcing reallocations, inventory positioning,
allocation controls, and routing choices under explicit constraints. Digital twins reinforce this mechanism
by enabling fast scenario evaluation, counterfactual analysis, and policy-shock stress testing—particularly
for network reconfiguration decisions where second-order effects (capacity, lead-time tails, compliance
constraints) matter. Critically, this mechanism depends on governance: approval gates, explainable
recommendations, and auditable decision trails ensure that prescriptive outputs translate into accountable
actions rather than remaining advisory artefacts.

3.1.1 Implementation pathways under varying maturity (Revised)

To support adoption across heterogeneous capability levels, we propose three maturity-aligned
implementation pathways consistent with the module sequencing in Figure 1 and the control matrix in
Table 1.

Path A — Foundational visibility (data and early warning).

Organizations should begin by unifying event ingestion, improving master data quality (supplier, item,
lane, site), and deploying early-warning alerts with defined ownership and escalation rules. The objective
is to reduce time-to-detect and establish reliable telemetry before introducing more complex optimization
or simulation components.
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Path B — Decision intelligence (predictive + governed prescriptive).

With a stable data foundation, firms can layer predictive models for lead-time distribution shifts and
demand regime changes, embed systematic backtesting on shock periods, and introduce prescriptive
optimization within a controlled decision process. Guardrails—such as human-in-the-loop approvals,
policy constraints, and override logging—are essential to maintain trust and compliance while increasing
decision speed and reducing cost-to-serve under stress.

Path C — Constrained orchestration (digital twins and workflow integration).

Mature organizations can integrate digital twins for scenario-based planning and incorporate workflow
automation for faster execution, while keeping high-impact and compliance-sensitive decisions human-
approved. This pathway emphasizes operationalizing learning loops: post-incident reviews, retraining
triggers, and scenario catalog governance to prevent model brittleness and institutionalize continuous
improvement.

Across all pathways, resilience measurement should be anchored to repeatable KPIs—time-to-detect, time-
to-decide, and time-to-recover—alongside service performance under disruption (e.g., OTIF/fill rate) and
cost outcomes (e.g., cost-to-serve). External stress proxies and trade-policy uncertainty indicators can be
used to contextualize results and justify trigger-based operating modes.

Numbered list (edited for academic consistency)

1. Define a shock taxonomy: tariffs, sanctions/export controls, commodity spikes, route disruptions,
and supplier insolvency.

2. Establish a resilience data product: unified event model, master-data governance, and external
signal connectors.

3. Build a risk model library: supplier risk scoring, lead-time shift detection, and demand regime-
switching models.

4. Adopt prescriptive playbooks: pre-approved actions by shock type (reallocate, expedite, dual-
source, substitute).

5. Deploy digital twin stress tests: simulate policy shocks and capacity loss; quantify service and
cost impacts.

6. Implement governance gates: human-in-the-loop approvals for strategic sourcing, compliance-
sensitive trades, and pricing.

7. Measure resilience continuously: time-to-detect, time-to-decide, time-to-recover; link metrics to
business outcomes.

8. Run post-incident learning loops: root-cause analysis, retraining triggers, supplier requalification,
and policy updates.
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Discussion
Geoeconomic shocks as structural uncertainty

Geoeconomic disruptions differ fundamentally from conventional forms of operational variability because
they can reprice entire sourcing strategies and network configurations through legal and policy constraints,
including sanctions regimes, export controls, and heightened compliance requirements, as well as through
abrupt cost shocks such as tariffs and commodity-market dislocations. Unlike routine demand or supply
fluctuations, these shocks alter the feasible set of suppliers, routes, and contractual relationships rather
than merely increasing variance around existing baselines.International macroeconomic assessments
consistently indicate that heightened trade tensions and policy uncertainty weaken growth prospects,
raise production costs, and place sustained strain on global supply chains. These conditions reinforce the
necessity of planning under structural uncertainty rather than assuming stationary stochastic disturbances
that can be managed through historical averages or marginal buffers. Within this environment, resilience
strategies that rely primarily on backward-looking indicators or single-regime planning assumptions are
likely to underperform. When disruption dynamics shift rapidly across legal, economic, and logistical
dimensions, effective resilience requires adaptive planning frameworks capable of accommodating regime
changes, constraint redefinitions, and non-linear propagation effects across multi-tier supply networks.

Why analytics improves resilience only with governance and adoption

Although Al models can detect patterns and anomalies faster than human analysts, they do not automatically
translate into decisions or coordinated execution. The framework in Figure 1 and the control matrix in
Table 1 therefore treat governance as a first-class design requirement: resilience architectures must specify
(1) who has decision rights to act on signals, (ii) what actions are permissible under policy, cost, and
compliance constraints, and (iii) how decisions are audited, reviewed, and improved. This emphasis is
consistent with institutional guidance that highlights analytical capacity and digitalization as enabling
conditions, while also warning that resilience cannot be achieved through simplistic structural moves
alone. From an implementation standpoint, adoption mechanisms (explainability, approval gates, override
logging, and post-incident reviews) are not ancillary controls; they are the means by which analytical
outputs become accountable operating decisions.

Digital twins and scenario discipline

Digital twins are particularly valuable under geoeconomic shocks because they enable disciplined “what-if”
assessments of tariffs, route changes, and supplier loss under capacity, service, and compliance constraints.
In the proposed architecture, the digital-twin layer supports counterfactual evaluation and stress testing,
but its effectiveness depends on scenario governance: firms should maintain a curated scenario catalog
linked to playbooks, KPI thresholds, and retraining triggers. Without this discipline, scenario planning can
devolve into ad hoc modelling that is difficult to reproduce, validate, or operationalize.

Policy alignment: diversification versus localization

The framework aligns with OECD resilience perspectives that emphasize strengthening and diversifying
supply chains while avoiding approaches that undermine the gains from open trade. OECD reporting
cautions that simply re-localising production within national borders can harm growth and may not
reliably strengthen resilience.For firms, the implication is analytics-driven diversification: multi-sourcing,
selective nearshoring where justified, and dynamic allocation under uncertainty, rather than static
relocation. Prescriptive analytics and simulation can make these trade-offs explicit by quantifying service,
cost, and compliance impacts across alternative network configurations.
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Measuring resilience credibly

Credible resilience management requires measurement systems that are sensitive to stress regimes and
comparable over time. Macro-level monitoring tools such as the World Bank’s Global Supply Chain Stress
Index illustrate how stress can be quantified using shipping and logistics signals derived from tracking
data, and can be used as an exogenous contextual indicator when interpreting firm performance.At the
firm level, analogous indices can be constructed by combining lead-time dispersion (including tail risk),
supplier reliability, event exception rates, and capacity utilization. These indices enable trigger-based
governance: when stress crosses thresholds, organizations can transition into predefined operating modes
(e.g., allocation controls, inventory buffers, alternative routing) and subsequently evaluate effectiveness
through time-to-detect, time-to-decide, and time-to-recover metrics.

Limits and risks

Al introduces non-trivial risks for resilience programs. Models can become brittle under regime shifts,
early-warning systems can create alert fatigue through false positives, and prescriptive optimizers can
overfit cost objectives in ways that reduce slack and adaptability. In geoeconomic contexts, additional
risks arise from compliance obligations (sanctions/export controls/traceability), which can conflict with
purely cost-minimizing recommendations. Therefore, analytics must be embedded within compliance-
aware workflows and must produce auditable evidence—data lineage, assumptions, constraints, and
rationale—for why specific actions were recommended and approved. This reinforces the paper’s central
claim: resilience depends not only on analytical capability, but on governance mechanisms that ensure
accountable adoption and continuous learning.

Conclusions

Al and advanced analytics can materially strengthen supply chain resilience under geoeconomic shocks,
but only when deployed as a governed, end-to-end decision system rather than as isolated predictive
models. The paper’s central contribution is a modular architecture (Figure 1) that connects sensing and
early warning, predictive disruption modelling, prescriptive optimization, and digital-twin simulation
to execution orchestration with clear decision rights, auditability, and KPI-based learning loops.
The accompanying control matrix (Table 1) operationalizes implementation by specifying minimum
prerequisites, governance controls, and expected resilience effects for each module.The synthesis further
indicates that resilience improvements are driven by lifecycle integration across preparation, response,
and recovery, particularly under regime shifts where models calibrated on stable periods can degrade.
Accordingly, the recommended strategy is maturity-aligned: organizations with fragmented data should
begin with reliable telemetry and early-warning controls; those with stable data foundations should extend
to regime-aware forecasting and governed prescriptive decision support; and mature organizations can
integrate digital twins and constrained automation to accelerate scenario evaluation and execution while
maintaining human oversight for high-impact or compliance-sensitive decisions.Finally, resilience should
be managed through measurable KPIs—time-to-detect, time-to-decide, and time-to-recover—alongside
service and cost outcomes under disruption. In an environment characterized by trade tensions and
policy uncertainty, these capabilities constitute a strategic operating requirement rather than an optional
technology initiative.
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execution traces.
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for trade-policy and logistics shocks (tariff escalation, sanctions/export controls, route disruption, capacity
loss); (iv) a playbook library mapping triggers to pre-approved actions; and (v) a dashboard specification
for resilience KPIs (e.g., time-to-detect/time-to-decide/time-to-recover, OTIF under disruption, and cost-
to-serve).
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Appendix A
Appendix A. Resilience Readiness Checklist (condensed)

Al. Master data quality (suppliers, items, sites, lanes) and unique identifiers

A2. Event ingestion coverage (shipments, ETAs, port status, orders, inventory)

A3. External signal feeds (trade policy, tariffs, commodity prices, stress indicators)

A4. Model governance (registry, ownership, drift monitoring, retraining triggers)

AS. Scenario catalog and playbooks mapped to decision rights

A6. Optimization constraints documented, reviewed, and auditable

A7. KPI dashboard (TTR, OTIF under shock, cost-to-serve)

AS8. Post-incident learning loop (root-cause analysis, corrective actions, supplier strategy updates)

Appendix B
Appendix B. Monitoring Dashboard Indicators (condensed)

B1. Time-to-detect disruption (hours/days)

B2. Time-to-decide (scenario cycle time)

B3. Time-to-recover (TTR) by product family/region

B4. Lead-time variance and tail risk (e.g., 95th percentile lead time)

BS5. Service level under stress (fill rate, OTIF)

B6. Alert precision/recall (false-positive rate)

B7. Optimization adherence and override rates

B8. Internal resilience stress index (composite indicator benchmarked against external stress proxies)
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